

Autosomal DNA Tests - Part 2

Using Autosomal DNA to find your cousins

Autosomal DNA – Part 1

- Basic genetics: DNA, mutations & SNPs
- The DNA testing process
- Compared the 3 companies
- Reviewed their 'Ethnicity Reports'

SURVEY

Attended 'Autosomal DNA – Part 1'?

Have tested and received results?

Company used?

- FamilyTreeDNA?
- **23&Me?**
- AncDNA?
- Tested at 2 DNA Co's? 3 DNA Co's?

Goals

- What really is a match?
- Review of each company's tools
- Chromosome Browsers & Associated Tools
- The importance of 'Triangulated Groups'
- A comprehensive plan based on segment analysis
- Two Key '3d Party Tools'

Part 1: Key Points

- DNA is passed down more unevenly for distant ancestors
- Eventually we receive no DNA from some ancestors
- atDNA testing limited to 5-6 generations (4th cousins)
- Siblings inherit varying segments of parental DNA
- DNA test can't tell which parent contributed which base in a pair*

(* unless you test at least one parent and do a bit of work)

Matches

- The more segments you share the closer you are to your match
- The more DNA you share in <u>large segments</u> the closer you are
- Shared segments are often measured in centiMorgans (cM)

"A centiMorgan is equal to a 1% chance that a marker at one genetic locus on a chromosome will be separated from a marker at a second locus due to crossing over in a single generation"

centiMorgans are statistical estimates of equal distance
 (genetically) from one point to another – 'DNA yardsticks'

Working with Cousins Who Match Your DNA

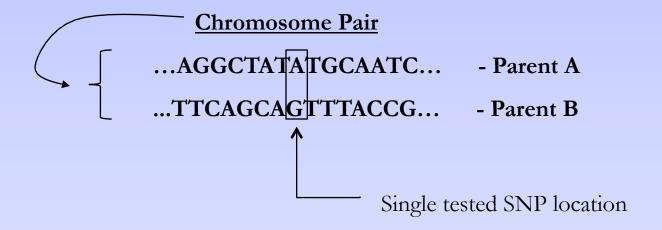
Here is where the work begins

Matches displayed highest to lowest relationship (default)

Make it easy on your matches:

- up-to-date email address
- oldest known paternal/maternal ancestor, date, location
- detailed list of ancestral surnames, dates, locations
- pedigree chart (GEDCOM or PDF) for them to use

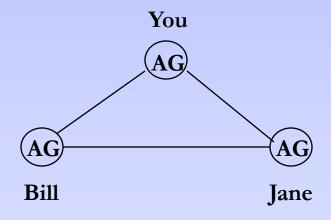
"A genetic match is another tester who has a run of <u>identical SNPs</u> long enough to exceed the testing companies <u>threshold for relatedness</u>."



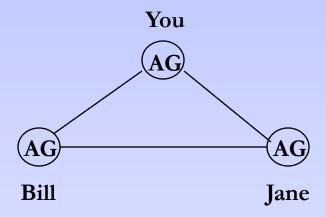
Chromosome Pair

...AGGCTATATGCAATC... - Parent A

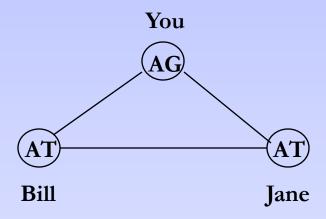
...TTCAGCAGTTTACCG... - Parent B



Your result = 'AG'


Match 1 = Bill

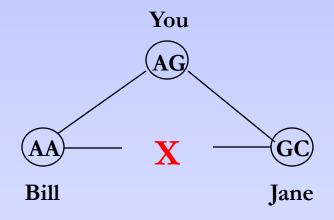
Match 2 = Jane



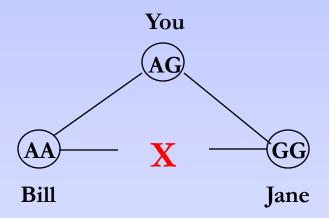
You match with 'Full-Identical Regions' - both 'A' & 'G' in this case

You match with 'Half-Identical Regions' – either 'A' or 'G' ('A' in this case)

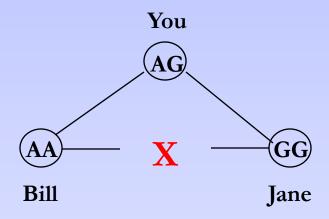
Most matches are Half-Identical Regions (HIR)

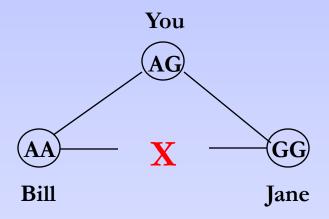


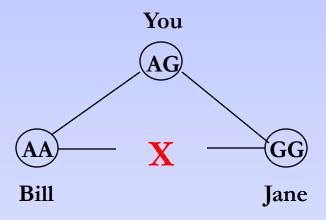
Match
$$1 = Bill$$


Match
$$2 = Jane$$

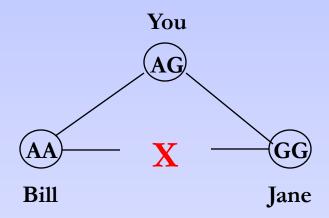
KEY: initially you only know that Bill & Jane each match you - either with an A or G



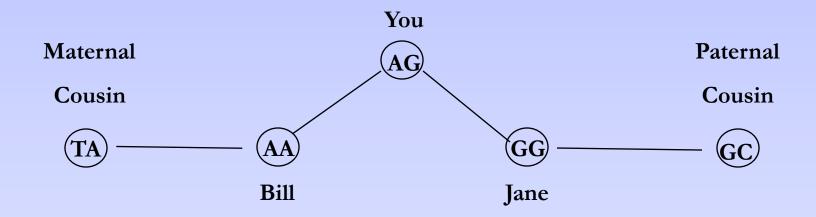

They match YOU but not each other


Which side of your family is Jane on ??

Option 1: Search Jane's tree & yours for common ancestor (a lot of work for each & every match)



Option 1: Search Jane's tree & yours for common ancestor


(If you found one would that be proof that's where DNA matched?)

Option 2: Test known cousins on both sides of your tree

Option 2: Test known relatives on both sides of your tree

Quick Overview of Each Company's Tools

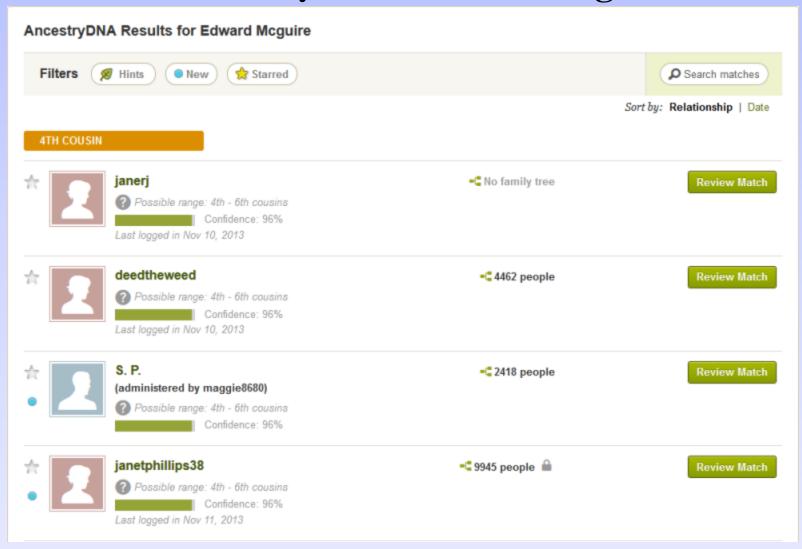
Common Information From Each Company

List of matches

Genealogy data – user dependent

Method to contact your matches

AncestryDNA


List of matches

Genealogy data – user dependent

Method to contact your matches

Ancestry DNA Matches Page

Ancestry DNA

<u>2012 – 4Q2014 Status</u>

Ancestry match threshold very low...often 10,000 matches

Minimal linkage between Ancestry Trees & Ancestry DNA data

No tools to work with segment data (chromosome browser)

Little information on how Ancestry analyzed actual data

Ancestry DNA

4Q2014 Upgrade

Ancestry announces change to match-selection scheme

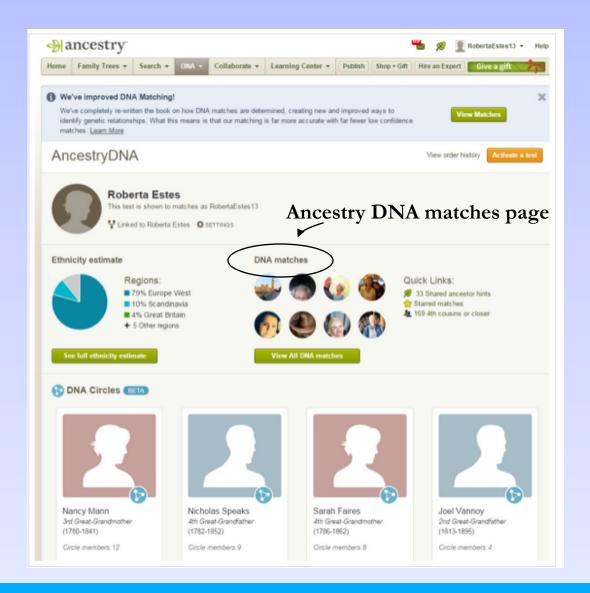
Far fewer matches – most appear to be better choices

DNA data & Tree data better coordinated - "DNA Circles"

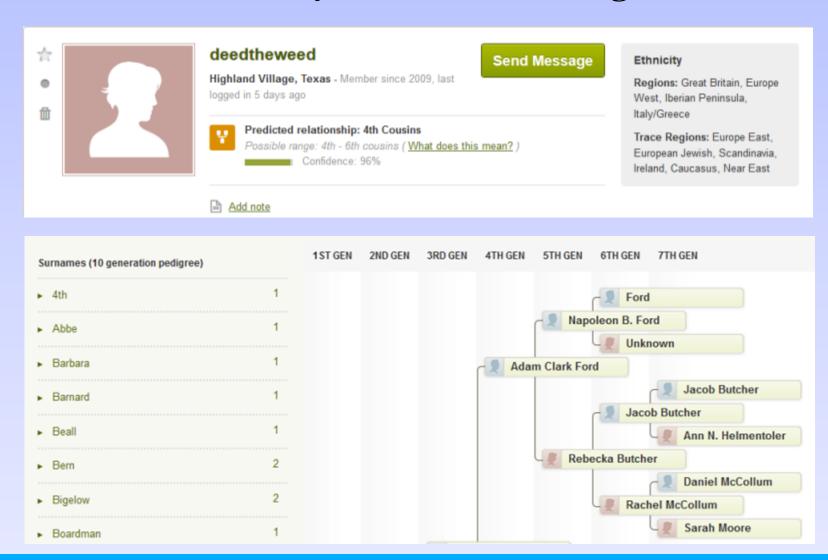
No tools to work with segment data (chromosome browser)

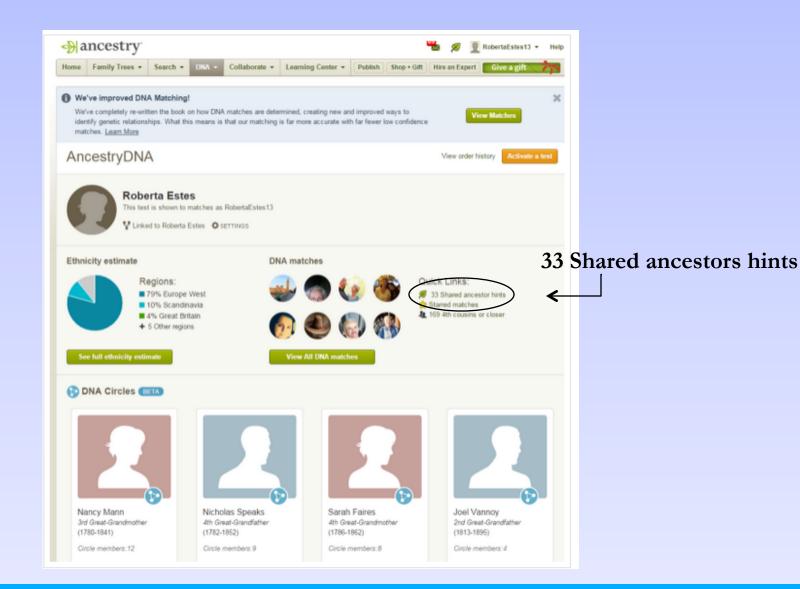
Little information on how Ancestry determines DNA Circles

	Yesterday	Today	Shakey Leaves Yesterday	Shakey Leaves Today
Total Matches	13,100	3,350		
2 nd Cousins	1 – 99% confidence	0 – shifted to third cousin	0	0
3 rd Cousins	10	8 – shifted to fourth cousins	2	1 (shifted to 4 th cousin)
4 th Cousins	243	161	10	14
Distant Cousins	12,846	3,181	36	18

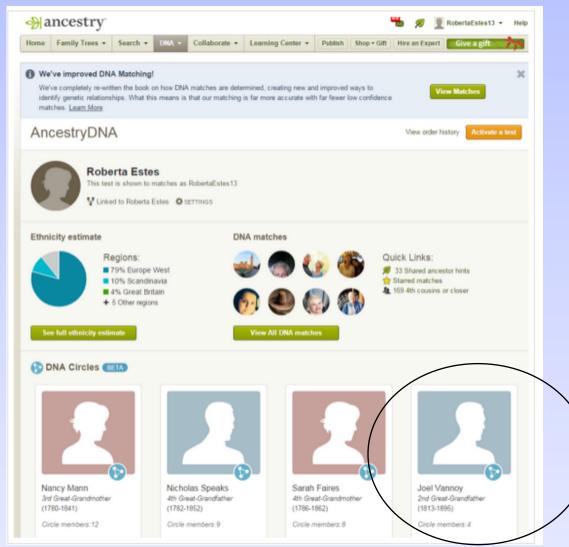

Source: Roberta Estes, http://dna-explained.com/category/ancestry-com/

Confidence Score	Details		
Extremely High	Approximate amount of sharing: More than 30 centiMorgans Likelihood you and your match share a single recent common ancestor (within 5 or 6 generations): Virtually 100%		
	Description: You and your match share enough DNA to prove that you're both descendants of a common ancestor (or couple)—and the connection is recent enough to be conclusive.		
Very High	Approximate amount of sharing: 20-30 centiMorgans Likelihood you and your match share a single recent common ancestor (within 5 or 6 generations): 99%		
	Description: You and your match share enough DNA that we are almost certain you're both descendants of a recent common ancestor (or couple).		
High	Approximate amount of sharing: 12-20 centiMorgans Likelihood you and your match share a single recent common ancestor (within 5 or 6 generations): 95%		
	Description: You and your match share enough DNA that it is likely you're both descendants of the same common ancestor or couple, but there's a small chance the common ancestor(s) are quite distant and difficult to identify.		
Good	Approximate amount of sharing: 6-12 centiMorgans Likelihood you and your match share a single recent common ancestor (within 5 or 6 generations): More than 50%		
	Description: You and your match share some DNA, probably from a recent common ancestor or couple, but the DNA may be from distant ancestors that are difficult to identify.		
Moderate	Approximate amount of sharing: 6 centiMorgans or less Likelihood you and your match share a single recent common ancestor (within 5 or 6 generations): 20-50%		
	Description: You and your match might share DNA because of a recent common ancestor or couple, share DNA from very distant ancestors, or you may not be related.		


Source: Blaine Bettinger, www.thegeneticgenealogist.com/2014/11/19/



Ancestry DNA Matches Page



DNA Circle for your ancestor

DNA Circles

You must have a PUBLIC tree to be placed in a DNA Circle

You will share DNA with <u>at least one other person</u> in the DNA Circle, but you might not share with everyone in that circle. Those you don't share DNA with will share DNA with someone other than you in that circle

DNA Circles algorithm looks back 7 generations for a match, so the more complete your tree – the more likely you are to find a match

DNA Circles tool does require Ancestry subscription

About 50% of those with public trees will have at least one circle

DNA Circle is a potential team of researchers!

Source: Blaine Bettinger, www.thegeneticgenealogist.com/2014/11/19/goodbye-false-positives-ancestrydna-updates-matching-algorithm/

Ancestry DNA

- + very easy to see 'proposed' common ancestor
- + improved value to matches list
- + DNA Circles identifies group to do joint research!
- many verified errors with chosen common ancestor
- many verified errors with DNA Circle results
- no segment analysis tools
- no understanding of how Ancestry is making calls

23andMe Analysis Tools

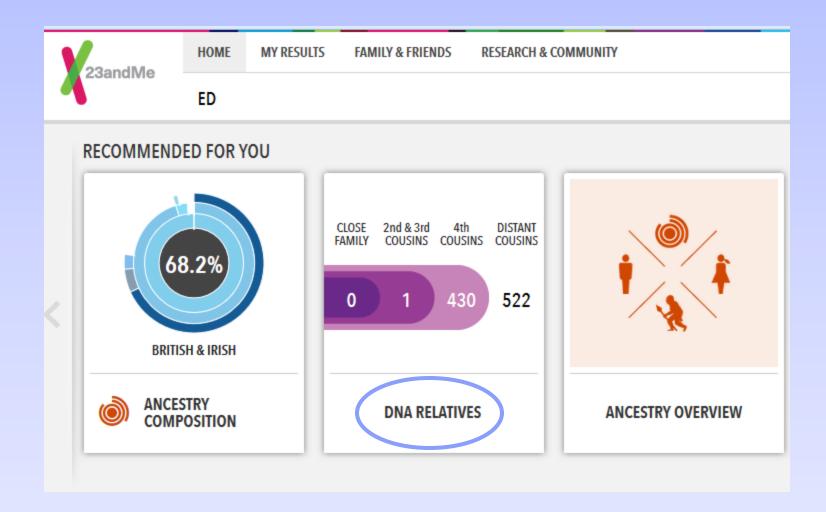
23andMe has robust tools for segment analysis & triangulation

Tools are split into 3 areas of the site

1. Matches list is at – 'DNA Relatives'

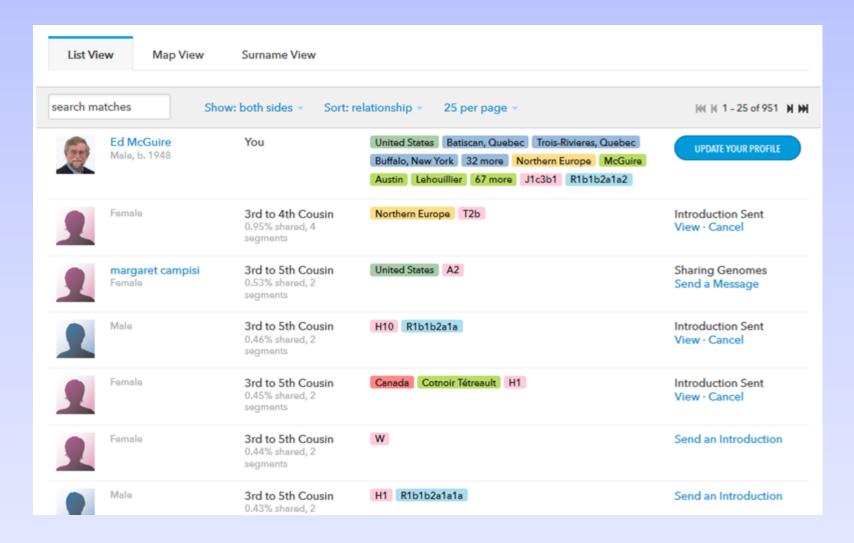
(Home/DNA Relatives)

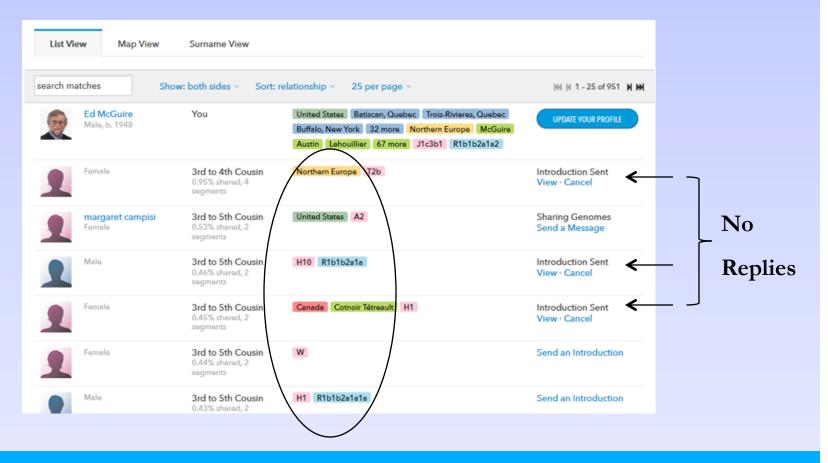
2. Chromsome browser is at – 'Family Inheritance: Advanced'

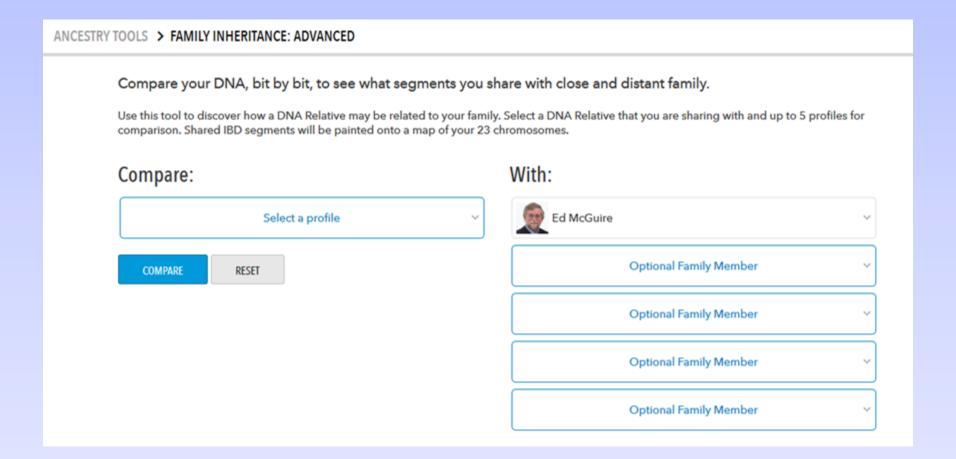

(My Results/Ancestry Tools/ Family Inheritance: Advanced)

3. Unique location tool – 'Countries of Ancestry'

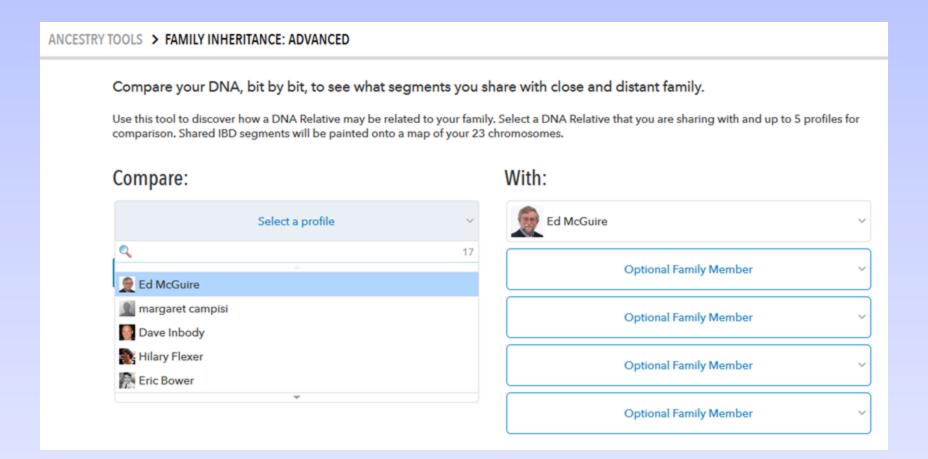
(My Results/Ancestry Tools/ Countries of Ancestry)

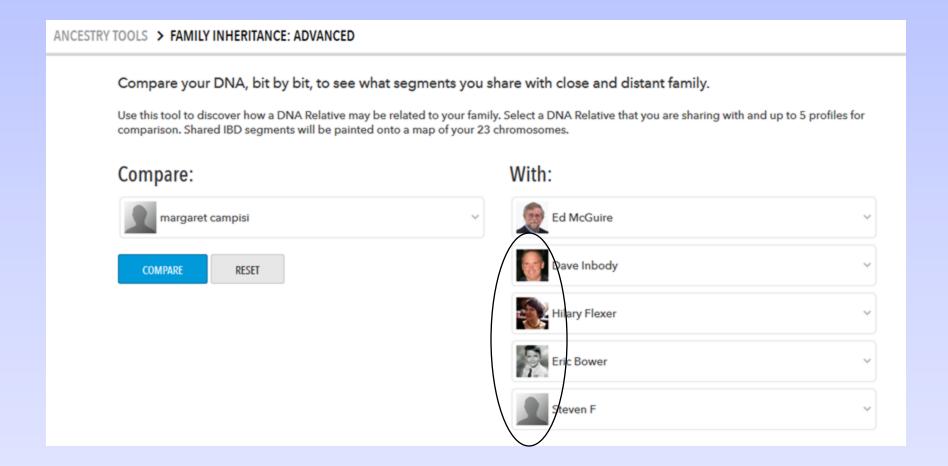

'Match' thresholds vary by tool (see Table 1 in your handout)

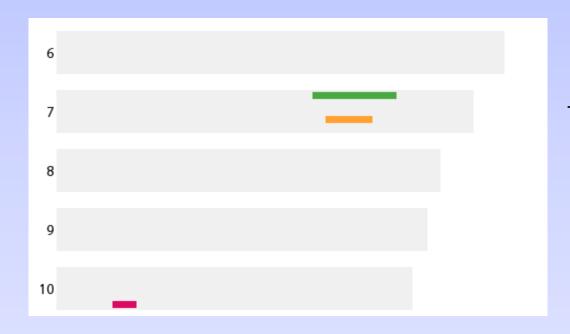

DNA Relatives Match List



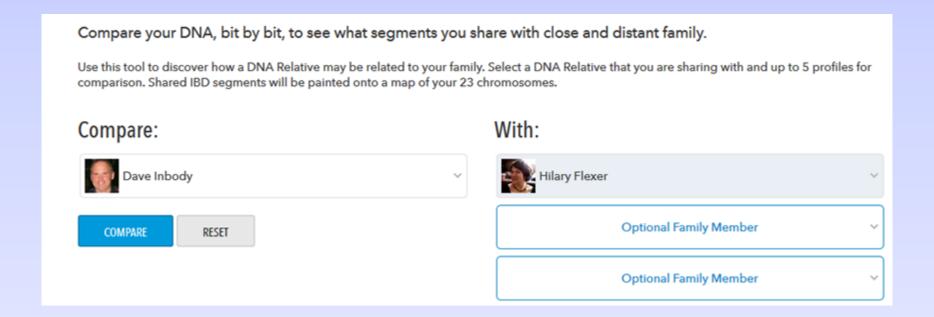
DNA Relatives Match List


- You can see no data until you request 'sharing' & they accept
- Many testers not interested in genealogy



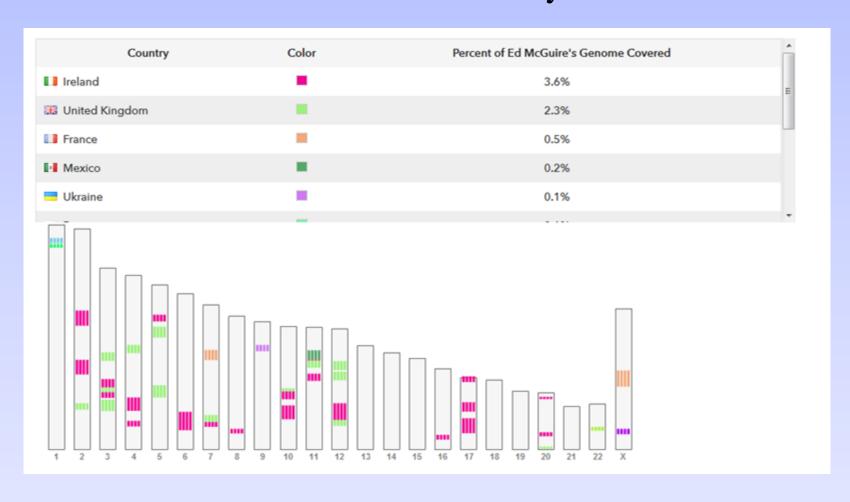


View in a table, or download table.		
Comparison	Half IBD	# segments
Ed McGuire vs. margaret campisi	39 cM	2
Ed McGuire vs. Dave Inbody	20 cM	1
Ed McGuire vs. Eric Bower	16 cM	1
Ed McGuire vs. Lauren Brothers	16 cM	1
Ed McGuire vs. Michael Marsh	12 cM	1

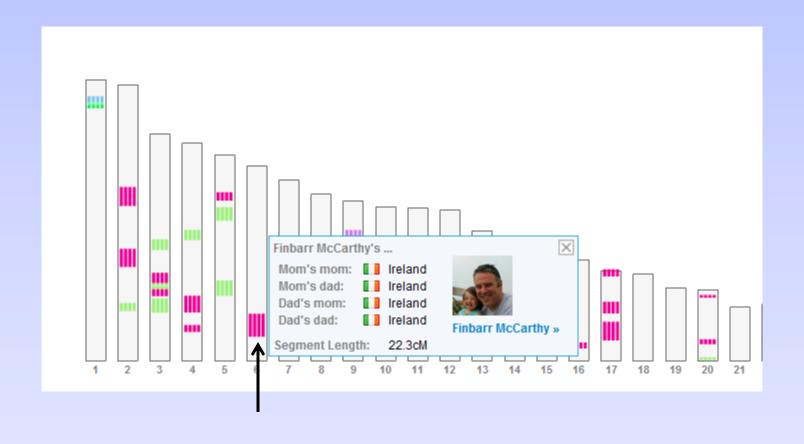


Margaret Campisi &
Lauren Brothers
overlap on CHR 7

- Unique feature allows you to compare matches against each other
- If they match you at same segment...do they match each other??



- Testers must 'opt in' and add their grandparents' homeland
- You must 'opt in' to utilize this data
- If you match anyone in that DB where their GPs all one country
 - → paints that DNA with ancestors homeland


Note: 5cM threshold here...lots more matches are available

Very helpful feature!!

Finbarr McCarthy Health and Ancestry

You are not sharing with Finbarr McCarthy.

Why can't I invite this user to share genomes?

You have sent an invitation to Finbarr McCarthy to share genomes. Click here to cancel it.

SEND A MESSAGE

Personal Information

Sex: Male

Ancestry Information

Birthplace: Ireland

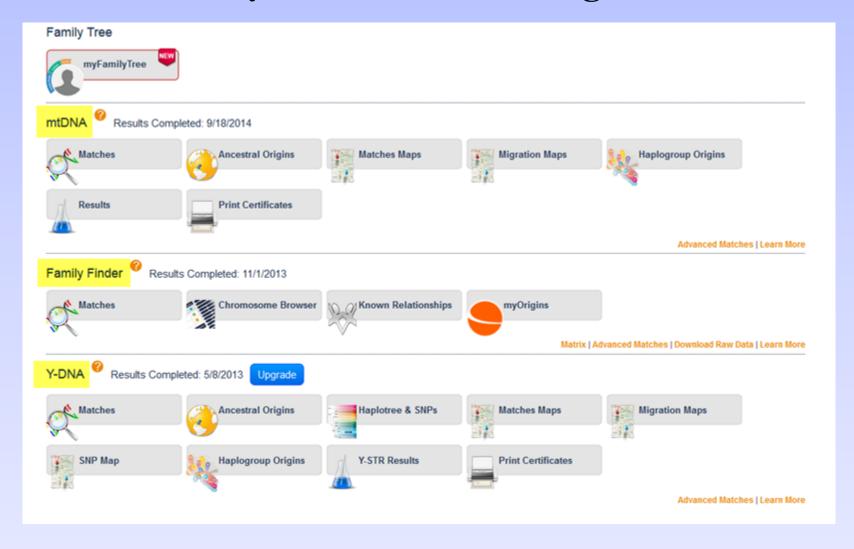
Family Surnames: McCarthy, Hamilton, Lanigan, O'Sullivan, Dunne, Fleming, Leary, McGrath, Killen

Family Locations: Cork, Bantry, Kilkenny, Tipperary, Ireland

23andMe

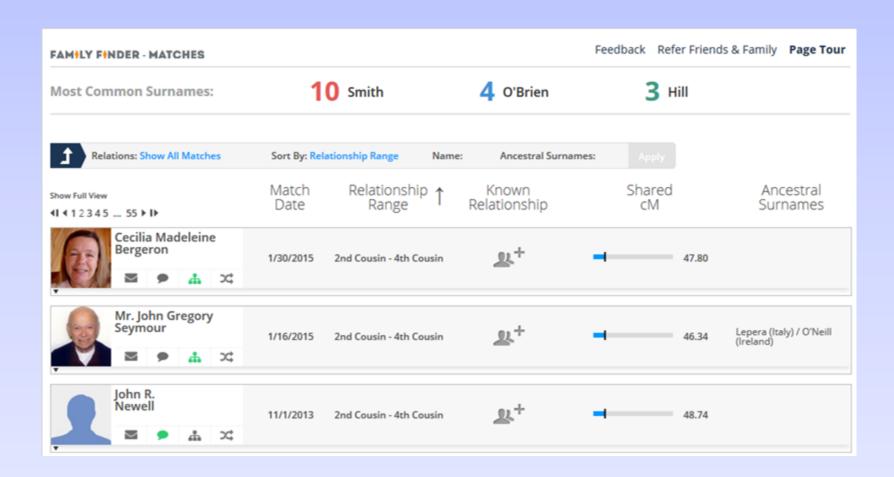
- + robust chromosome browser
- + ability to triangulate multiple matches to segment
- + allows comparison of matches to each other
- + COA tool matches testers homeland to DNA segments
- much lower response rates (but big user base)
- very difficult system for contacting matches
- focus remains mostly medical genetics

FamilyTree DNA Analysis Tools

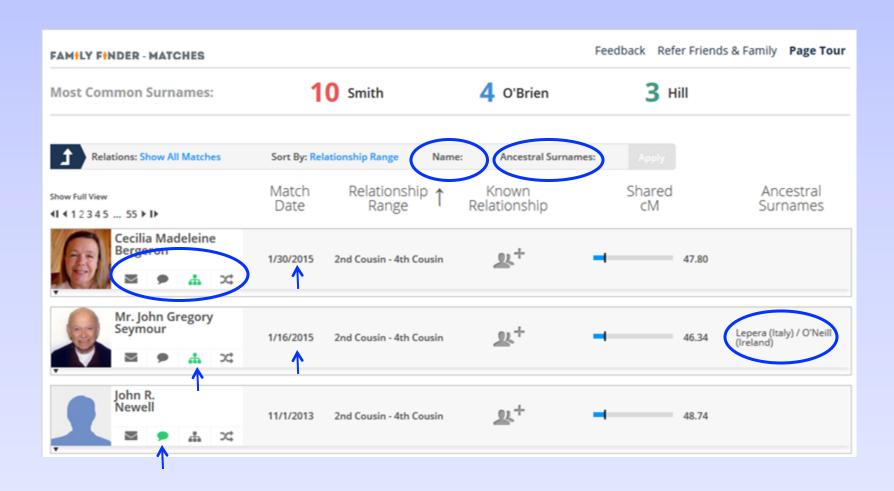

FTDNA has robust tools for segment analysis & triangulation

Tools are all located in one area

Site is well-organized

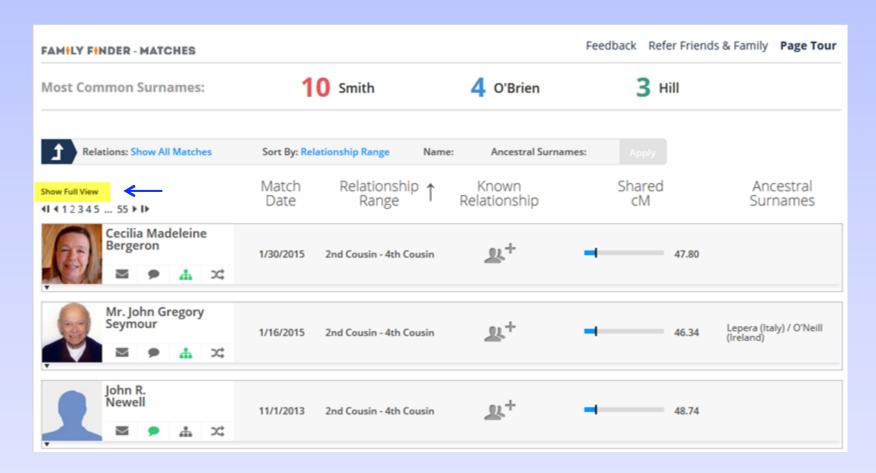


FamilyTreeDNA Home Page

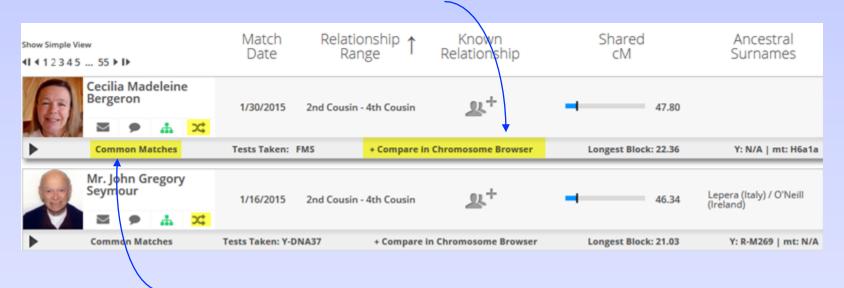


FamilyTreeDNA 'FamilyFinder' Tool

FamilyTreeDNA 'FamilyFinder' Tool



FT-DNA Matches Page


FamilyTreeDNA 'FamilyFinder' Tool

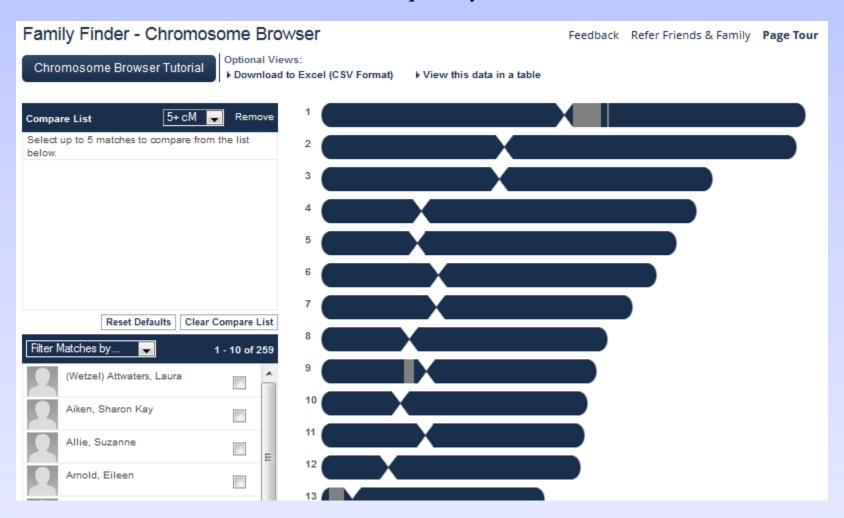
FamilyTreeDNA 'FamilyFinder' Tool

Chromosome Browser: visual layout of segments

In Common With (ICW) Tool: find all who match target cousin

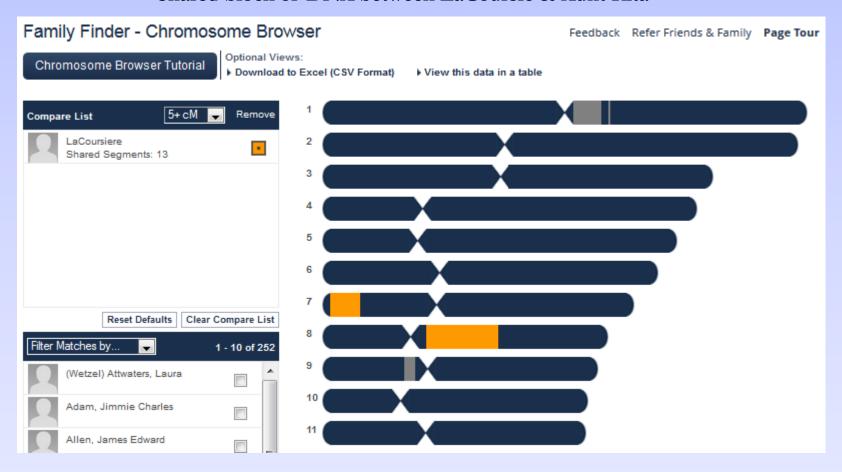
FamilyTreeDNA

- + robust chromosome browser
- + ability to triangulate multiple matches to segment
- + allows comparison of matches to each other
- + best response rates (but smaller user base)
- + most open & efficient communications
- no tool to compare one match to another
- only identifies HIRs (23andMe can also do FIR)

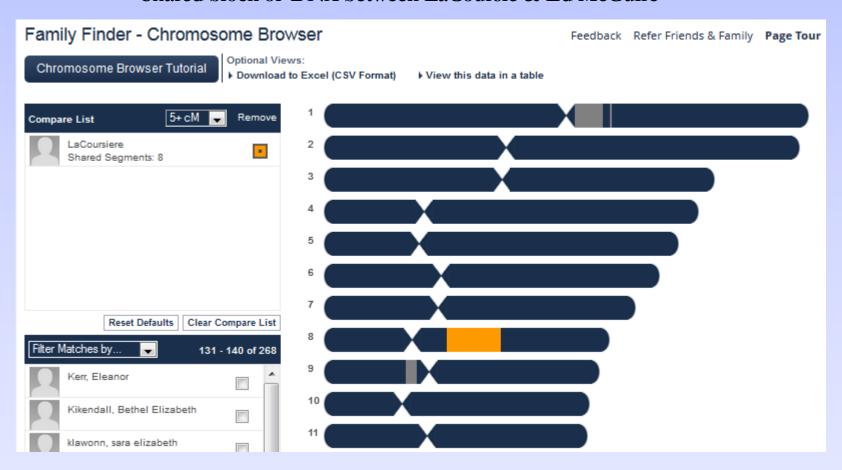

Chromosome Browsers

and

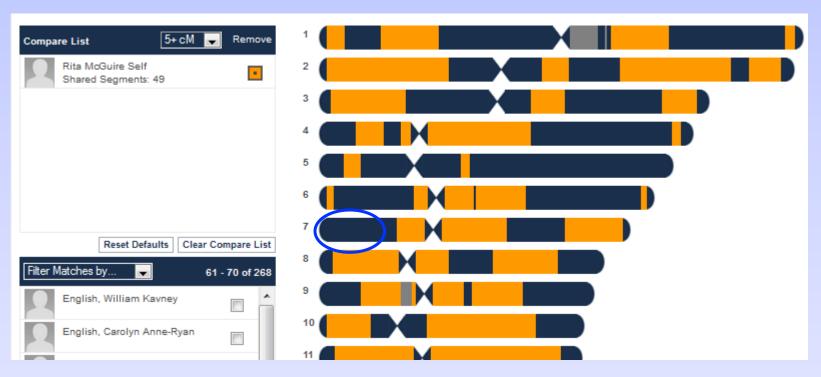
Triangulation



Blank Chromosome Map of my Aunt Rita

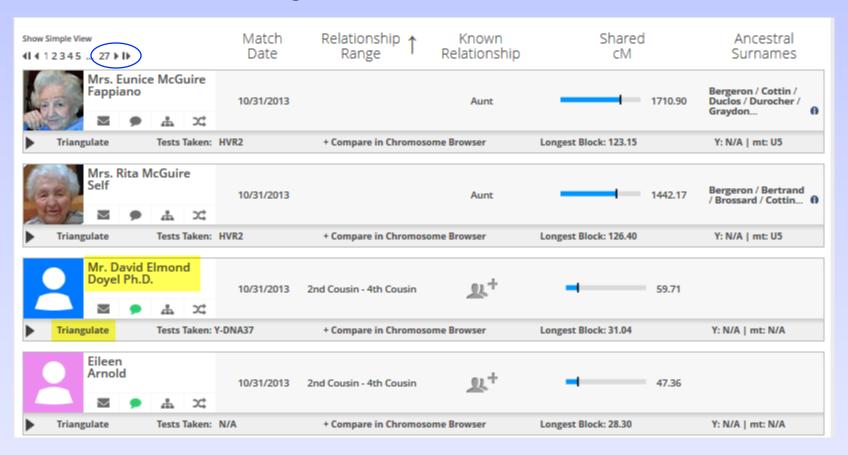


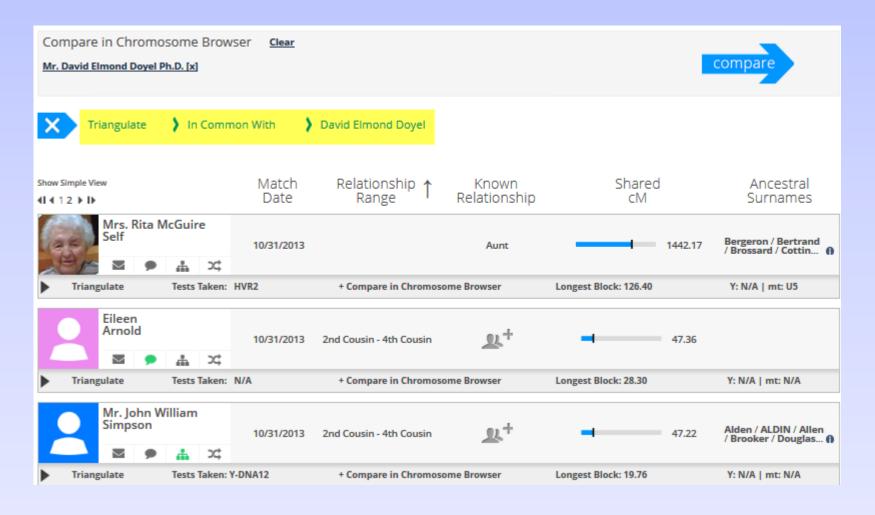
Shared block of DNA between LaCoursie & Aunt Rita



Shared block of DNA between LaCoursie & Ed McGuire

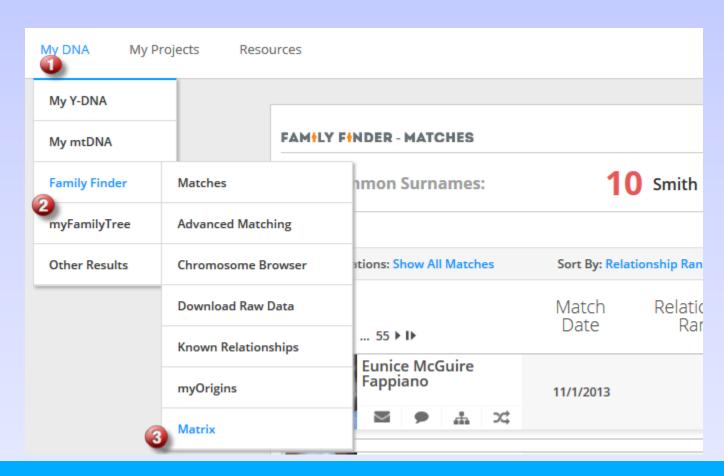
Chromosome Map of Shared DNA with my Aunt Rita




Autosomal DNA Tools

Using the 'In Common With' Tool

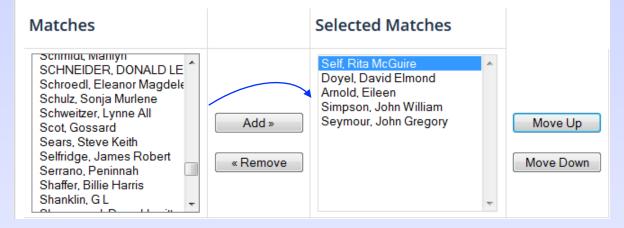
Autosomal DNA Tools


Triangulation: People in common w/ McGuire & Doyel

FT-DNA Matrix Tool

Run Matrix Tool on People in common w/ McGuire & Doyel

FT-DNA Matrix Tool


FAMILY FINDER - MATRIX

The Family Finder Matrix page allows you to select up to 10 people and compare their Family Finder relationships in

The page defaults to two lists:

- Matches: These are Family Finder matches who can be added to the grid.
- Selected Matches: These are Family Finder matches who are currently included in the grid.

Add matches to the matrix by clicking a name or names on the Matches list and then clicking the Add button. Remove Selected Matches list and then clicking the Remove button. The grid displays under the list as you begin to add match share a genetic relationship according to Family Finder results with a white check mark on a blue background. When white square.

FT-DNA Matrix Tool

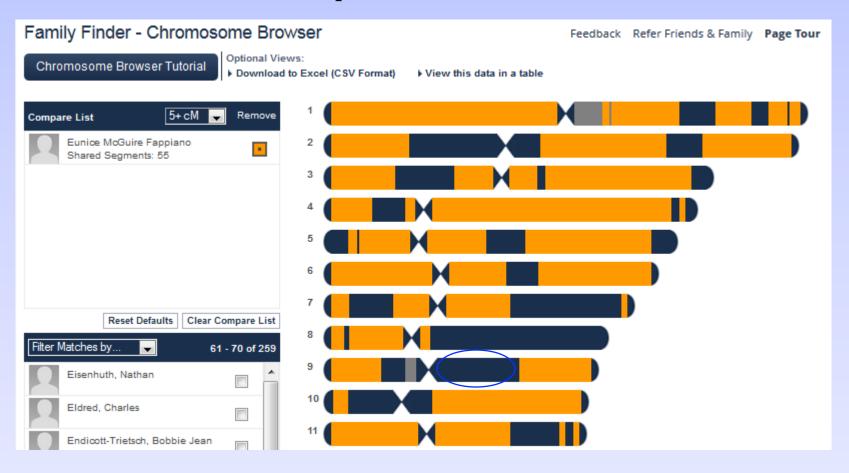
Matrix Matches												
	Rita McGuire Self	David Elmond Doyel	Eileen Arnold	John Gregory Seymour	John William Simpson							
Rita McGuire Self		0	0	•	•							
David Elmond Doyel	0		0	•	•							
Eileen Arnold	0	0		0	•							
John Gregory Seymour	0	0	0		0							
John William Simpson	0	•	•	•								

This person is identified as a match.

FT-DNA Matrix Tool

			Matrix Matches				
	Rita McGuire Self	David Elmond Doyel	Eileen Arnold	John William Simpson	John Gregory Seymour	Eunice McGuire Fappiano	
Rita McGuire Self		•	0	0	•	0	
David Elmond Doyel	0		0	0	•		
Eileen Arnold	0	•		0	•		
John William Simpson	0	•	0		•		
John Gregory Seymour	0	•	0	0			
Eunice McGuire Fappiano	•						

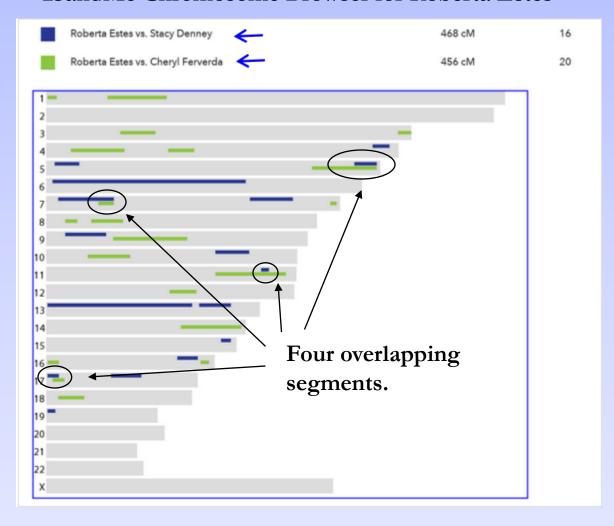
This person is identified as a match.


Person can match another tester – but at another segment (rare)

Solution would be to compare matches to each other in browser (like 23andMe)

FT-DNA Chromosome Browser

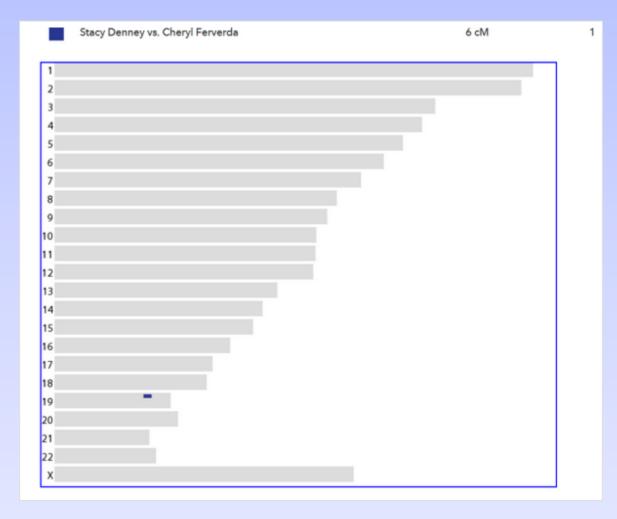
Chromosome map for sisters Rita and Eunice


FT-DNA Chromosome Browser

Two Aunts don't share this segment on Chromosome 9

23andMe Chromosome Browser for Roberta Estes

Source: http://dna-explained.com/2013/06/07/navigating-23andme-for-genealogy/



Chromosome Browser - Inferring Matches

- data show Stacy & Cheryl share DNA w/ Roberta
- data imply Stacy & Cheryl share w/ each other in 4 places
- both have lines from Ohio in 1800s name Miller

Stacy vs Cheryl – 4 matches disappear

Source: http://dna-explained.com/2013/06/07/navigating-23andme-for-genealogy/

Chromosome Browser – Inferring Matches

- data show Stacy & Cheryl share DNA w/ Roberta
- data implies Stacy & Cheryl share w/ each other in 4 places
- both have lines from Ohio in 1800s name Miller
- but Stacy matches Roberta's dad; Cheryl matches Roberta's mom!

Remember: each chromosome pair has two sides

Net: matching on same chromosome not always conclusive

(P.S. – and AncestryDNA needs a chromosome browser!!)

Triangulated Groups

What is a Triangulated Group?

- Three or more testers who all match each other
- They overlap segments in Chromosome Browser
- All of the matches match each other at that segment

The Value in Finding Triangulated Groups

Working on individual matches can lead to success but is very inefficient

- communication workload is higher than for groups
- you & your single match may not have records deep enough
- teams can divide tasks and keep each other motivated
- team has more chance someone has rec'd for 'Common Ancestor'

Finding several matches who all match each other at the same spot

- far more reliable DNA result than you and single match
- anomalies in data more likely to show up & be recognized

Key Steps in Finding Triangulated Groups

- 1. Develop organization system (logs and spreadsheet)
- 2. Contact matches especially at 23 and Me to 'share genomes'
- 3. Download match information & family tree data to spreadsheet
- 4. Locate multiple matches who appear to share common segments

Key Steps in Finding Triangulated Groups

2. Arrange them by Chr + Start - End with this

Rel	Co	KIT	MA	LN	em	Chr	Start poi	End poin	cMs	SNPs	TG	Czn	Surnames	Tree
	23	ivb	Jani	Sa	RF	1	30.4	37.5	9.4					
JGm	Gm	jvb	Alle			1	102.1	110.6	8.2	1,833				
D	23	jvb	Che	Asl	RF	1	116.1	152.9	17.3	1,609			2gp=Norway	
	23	jvb	Cyn	Bra	RF	1	242.4	245.8	8.2	759				
	23	jvb	Cat	Dv	RF	4	28.3	36.3	7.6	1,228		8C	SANFORD	http://t
	23	jvb	Luc	Co	hof	6	24.6	35.3	7.2				[4gp= UK, Can, Ger, Ire	
UGm	23	jvb	Den	Ril	der	6	24.7	39.1	12.1	4,770				
ICW-0	F37	jvb	She	Sh	jear	6	24.7	37.0	9.3	9,000			[MOORE,OSBORN]	
U37	F37	jvb	ROI	Sei	rise	6	24.7	39.3	12.2	9,700				
JGm	Gm	jvb	()		jess	6	24.8	38.8	10.1	8,693				
D	23	jvb	Kev	Mc	RF	6	24.9	37.3	9.5	4,173			>[Ireland]	http://t
D	23	jvb	Mic	Mo	Mc	6	24.9	36.7	B. 3	3,995				http://t
	23	jvb	Mai	Ch	RF	6	24.9	37.3	9.5	4,168			In cent WV	
UGm	Gm	jvb	Win	dia	dia	6	24.9	40.6	12.8	8,593				
	23	jvb	Fleu	ırDe	Tro	6	25.0	37.5	9.5					
	23	jvb	Will	He	wh	6	25.0	40.0	12.4			9C	DICKENSON?	
DR37	F37	jvb	Mai	Ro	gol	6	25.1	36.4	B. 3	8,700				
J37	F37	jvb	Kev	Mo	kev	6	25.1	37.3	9.3	9,000				http://t
J37	F37	jvb	Cat	Fe	cth	6	25.1	37.3	9.3	9,000			[MOORE?]	FFTree
U37	F37	jvb	Jam	Gra	jgra	6	25.1	39.3	12.1	9,600				
UGm	23	jvb	Free	Ril	lize	6	25.1	39.2	11.6	4,672				
U37	F37	jvb	Elsi	W	elsi	6	25.4	37.7	9.8	9,000				
UGm	Gm	jvb	FEN	Mo	lov	6	25.5	40.9	12.5	9,023				
J37	F37	jvb	Step	Ay	ste	6	25.6	37.3	9.2	8,800				
J37	F37	jvb	Tra	Jol	be			37.3	9.0	8,600				
JGm	Gm	jvb	Jack	Sai	De	-7	93.3	94.8	8.7	2,504				
	23	jvb	Adr	Ells	swo	7	83.3	105.5	18.1	4,029				
J37,B∨	F37	jvb	Lan	Ha	larr	7	83.5	105.3	20.0	5,200		5C-1	HATHAWAY	
D	23	jvb	Oliv	Cli	Ollie	8	111.2	126.9	15.9	3,111				
JA37,D	F37	jvb	Glo	Fut	gfu	8	111.5	124.3	14.0	2,693		10C	OVERTON/GARDINE	R

jim4bartletts@verizon.net 240-475-7664

Sorting Matches Into Correct Triangulated Groups

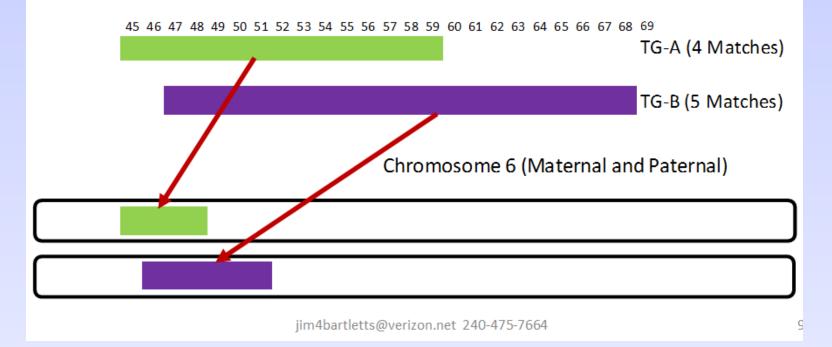
								-	Ŧ		
KIT	MA	LN	em	Chr	Start po	End poin	cMs	SNPs	TG	Czn	Surnames
jvb	Luc	Со	no F	6	24.6	35.3	7.2		Α		[4gp= UK, Can, Ger, Ire
jvb	Den	Ril	der	6	24.7	39.1	12.1	4,770	В		
jvb	She	Sh	jeai	6	24.7	37.0	9.3	9,000	Α		[MOORE,OSBORN]
jvb	ROI	Sei	rlse	6	24.7	39.3	12.2	9,700	В		
jvb	()		jess	6	24.8	38.8	10.1	8,693	Α		
jvb	Kev	М	RF	6	24.9	37.3	9.5	4,173	Α		>[Ireland]
jvb	Mic	М	Мс	6	24.9	36.7	8.3	3,995	Α		
jvb	Mai	Ch	RF	6	24.9	37.3	9.5	4,168	В		[n cent WV
jvb	Win	dia	dia	6	24.9	40.6	12.8	8,593	В		
jvb	Fleu	ırDe	Tro	6	25.0	37.5	9.5		IBS		
jvb	Will	He	whe	6	25.0	40.0	12.4		В	9C	DICKENSON?
jvb	Mai	Ro	gol	6	25.1	36.4	8.3	8,700	Α		
jvb	Kev	Mo	kev	6	25.1	37.3	9.3	9,000	Α		
jvb	Cat	Fei	cth	6	25.1	37.3	9.3	9,000	Α		[MOORE?]
jvb	Jam	Gra	jgra	6	25.1	39.3	12.1	9,600	В		
jvb	Free	Rile	lize	6	25.1	39.2	11.6	4,672	В		

Key Steps in Finding Triangulated Groups

- 1. Develop organization system (logs and spreadsheet)
- 2. Contact matches especially at 23 and Me to 'share genomes'
- 3. Download match information & family tree data to spreadsheet
- 4. Locate multiple matches who appear to share common segments
- 5. Investigate (chromosome browser, ICW, and confirm joint matches
- 6. Organize all rows (matches) by segments they share in common

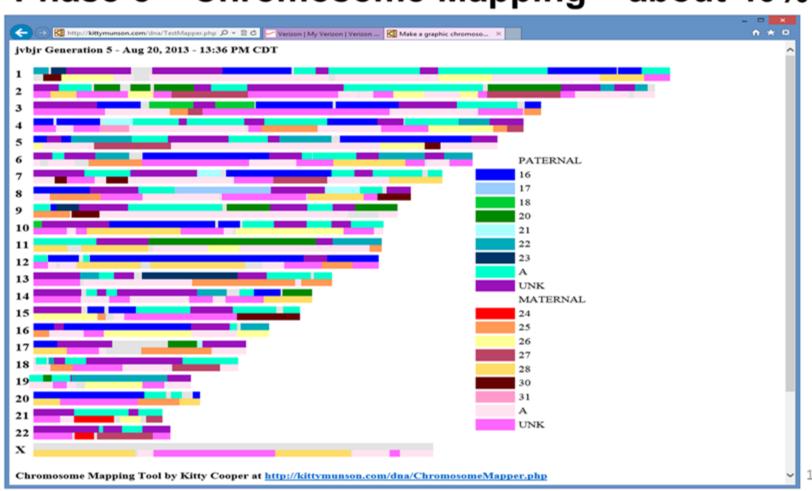
Sorting Matches Into Correct Triangulated Groups

KIT	MA	LN	ema	Chr	Start po	End poin	cMs	SNPs		TG	C	zn	Surnames
jvb	Luc	Со	noF	6	24.6	35.3	7.2			Α			[4gp= UK, Can, Ger, Ire
jvb	She	Sh	jear	6	24.7	37.0	9.3	9,0	00	Α			[MOORE,OSBORN]
jvb	()		jess	6	24.8	38.8	10.1	8,6	93	Α			
jvb	Kev	М	RF	6	24.9	37.3	9.5	4,1	73	Α			>[Ireland]
jvb	Mic	М	Mc	6	24.9	36.7	8.3	3,9	95	Α			
jvb	Mai	Ro	gold	6	25.1	36.4	8.3	8,7	00	Α			
jvb	Kev	М	kev	6	25.1	37.3	9.3	9,0	00	Α			
jvb	Catl	Fei	cthi	6	25.1	37.3	9.3	9,0	00	Α			[MOORE?]
jvb	Step	Ayl	stev	6	25.6	37.3	9.2	8,8	00	Α			
jvb	Trav	Jol	kbe	6	26.1	37.3	9.0	8,6	00	Α	50	⊱1	HATHAWAY
jvb	Den	Ril	den	6	24.7	39.1	12.1	4,7	70	В			
jvb	NOI	Sei	rlse	6	24.7	39.3	12.2	9,7	00	В			
jvb	Mai	Ch	RF	6	24.9	37.3	9.5	4,1	58	В			[n cent WV
jvb	Win	dia	diar	6	24.9	40.6	12.8	8,5	93	В			
jvb	Will	He	whe	6	25.0	40.0	12.4			В	90	;	DICKENSON?
jvb	Jam	Gra	jgra	6	25.1	39.3	12.1	9,6	00	В			
jvb	Free	Ril	lize	6	25.1	39.2	11.6	4,6	72	В			
jvb	Elsie	We	elsi	6	25.4	37.7	9.8	9,0	00	В			
jvb	FEN	Mo	love	6	25.5	40.9	12.5	9,0	23	В			
jvb	Fleu	ırDe	Tro	6	25.0	37.5	9.5			IBS			


Key Steps in Finding Triangulated Groups

- 1. Develop organization system (logs and spreadsheet)
- 2. Contact matches especially at 23andMe to 'share genomes'
- 3. Download match information & family tree data to spreadsheet
- 4. Locate multiple matches who appear to share common segments
- 5. Investigate (chromosome browser, ICW, and confirm joint matches
- 6. Organize all rows (matches) by segments they share in common
- 7. Use know relatives to determine which side of your tree (mom vs dad)
- 8. Use TG as team of experts to chase down Common Ancestor
- 9. Assign that segment to the Common Ancestor

Sorting Matches Into Correct Triangulated Groups


- -Individual Match Segments rolled up into TG Segments
- -Two overlapping TGs, each with Matches
- -Each TG is a part of a different Chromosome 6
- -Each TG comes from a different Common Ancestor

The Final Goal – Chromosome Map of Your Ancestors

Phase 5 – Chromosome Mapping – about 40%

Two Key 3rd Party Tools

GEDmatch

Autosomal DNA Segment Analyzer

GEDmatch

Location: http://v2.gedmatch.com/login1.php

One to Many Report

Haplogroup					Autos	omal			X-DNA	Α			
Kit Nbr	Kit Nbr Type List Select Sex		Mt Y		Details	Total cM	largest cM	Gen	Details	Total cM	largest cM		
▼ ▲					▼ ▲	▼ ▲		•	▼	▼ ▲		▼	▼
M181251	V4	L		М	u5	r1b1b2	<u>A</u>	3587.1	281.5	1	X	196	196
A710015	F2	L		М	J	R1b1a2	<u>A</u>	3585.8	214.5	1	X	186.8	97.7
F294401	F2	L		F	U5		<u>A</u>	1843.9	126.8	1.5	X	0	0
F294399	F2	L		F	U5		<u>A</u>	1523.3	126.6	1.6	X	0	0
F261918	F2	L		М	U5	I-M223	<u>A</u>	1559.7	111.5	1.6	X	67.8	67.8
A373877	F2	L		F			<u>A</u>	49.4	15.9	4.1	X	3.7	3.7
A413529	F2	L		F			<u>A</u>	46.3	12.3	4.1	X	0	0
F296954	F2	L		F			<u>A</u>	41.8	13.6	4.2	X	0	0
A962374	F2	L		F			<u>A</u>	44.7	13.1	4.2	X	0	0
FB4683	F2	L		F	H7		<u>A</u>	43.9	10.8	4.2	X	0	0
F325072	F2	L		F			<u>A</u>	40.2	10.7	4.2	X	0	0
F285837	F2	L		М		I-M253	<u>A</u>	40.9	10.6	4.2	X	0	0
A973047	F2	L		М			<u>A</u>	35.3	21.6	4.3	X	0	0
A615370	F2	L		F			<u>A</u>	36	21.2	4.3	X	0	0

GEDmatch

One to One Report

Kit Number 1:	F267073
Kit Number 2:	A373877
Show graphic bar for each Chromosome?	YesNo
For compressed graphic, enter width in pixels (zero or blank for expanded graphic, default=1000)	1000
SNP count minimum threshold to be considered a matching segment (Leave blank for default value = 700)	
Minimum segment cM size to be included in total: (Leave blank for default value = 7)	

GEDmatch

One to One Report

GEDmatch.Com Autosomal Comparison

Comparing Kit F267073 (*ebmvt) and A373877 (*jmstevens)

Minimum threshold size to be included in total = 700 SNPs

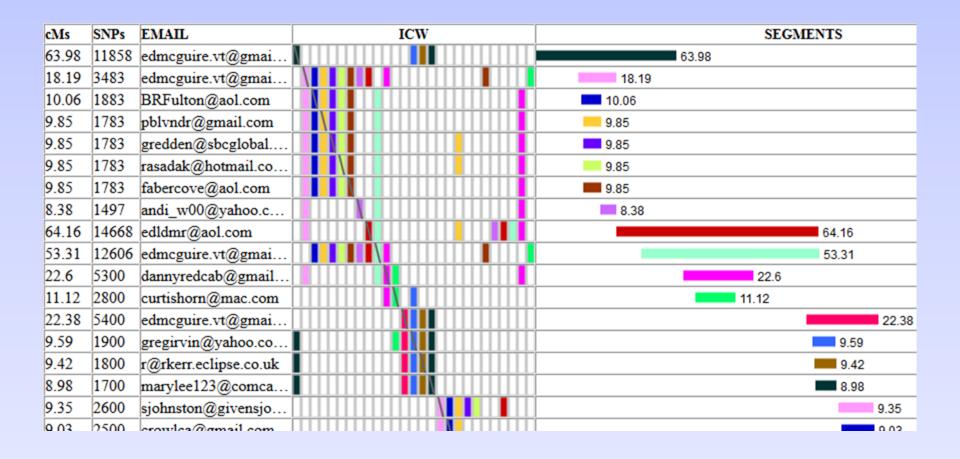
Mismatch-bunching Limit = 350 SNPs

Minimum segment cM to be included in total = 7.0 cM

Chr	Start Location	End Location	Centimorgans (cM)	SNPs	
12	12063116	21813381	15.9	2992	

Largest segment = 15.9 cM

Total of segments > 7 cM = 15.9 cM


Estimated number of generations to MRCA = 4.9

Comparison took 0.16551 seconds.

Autosomal DNA Segment Analyser (ADSA) Tool

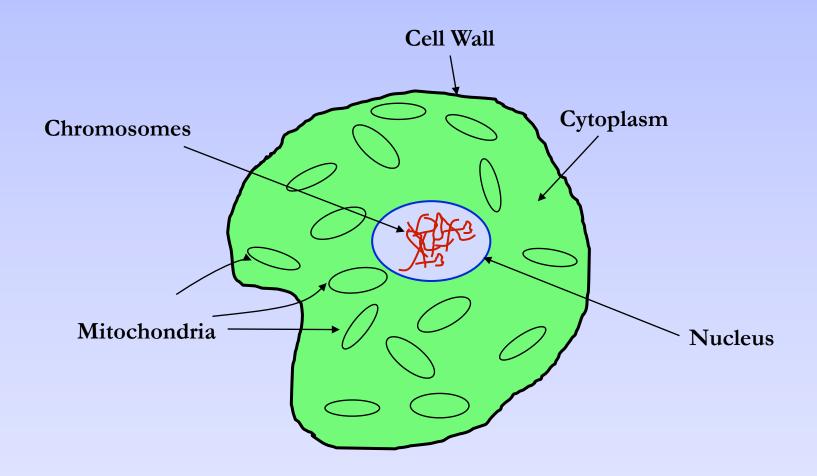
Location: http://www.dnagedcom.com/

Tuesday, 24 March – DNA Special Interest Group

(6:30 - 8:00 PM)

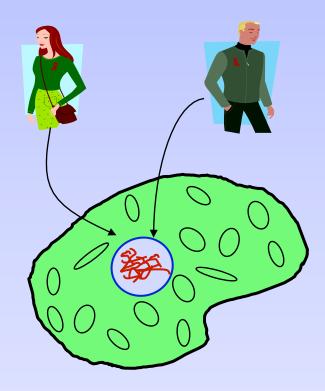
Layout of GEDmatch tools

Where to get instructions for uploading data


Demonstrations using the tool

Thank You

Any Questions?

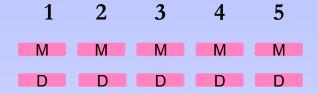


Hominid Cell

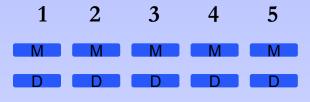
Parental Contributions to Autosomal DNA

Each Cell's 23 Chromosome Pairs

Karyogram of Human Male Cell


Source: Wikipedia.org (en.wikipeida.org/wiki/Karyotype)

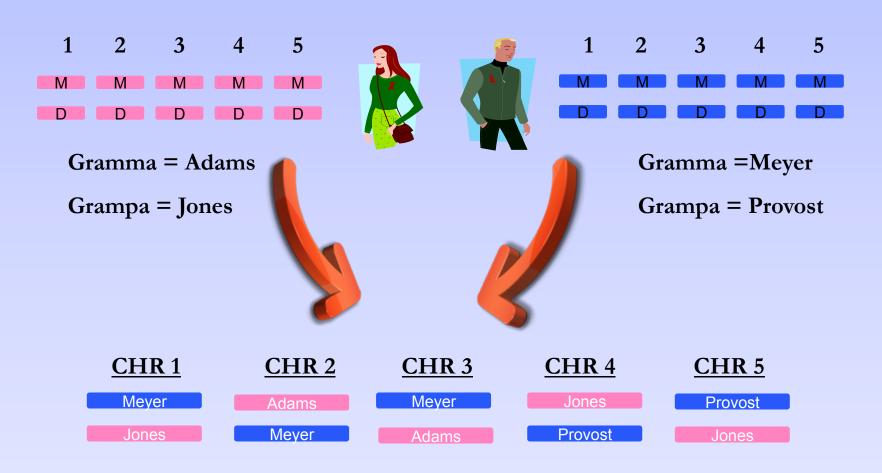
Variation in the Inheritance of Autosomal DNA



Random Assortment of Chromosomes

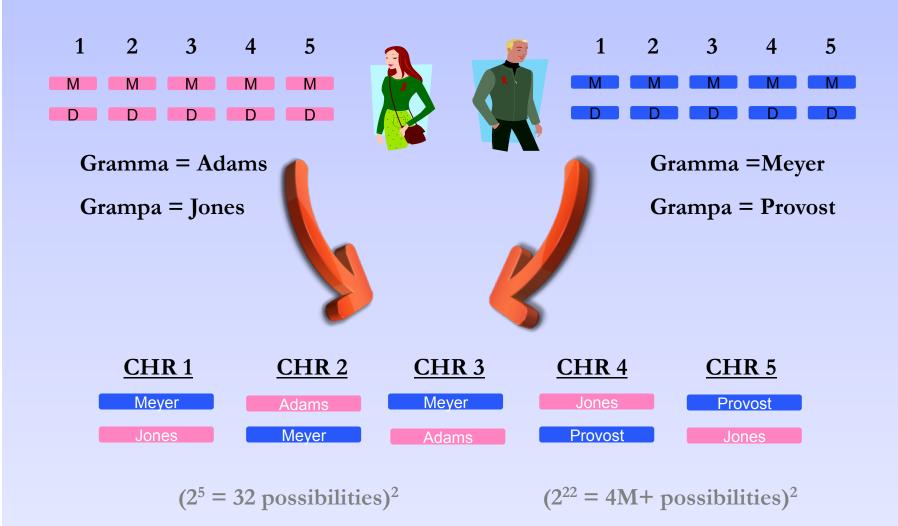
Gramma = Adams

Grampa = Jones

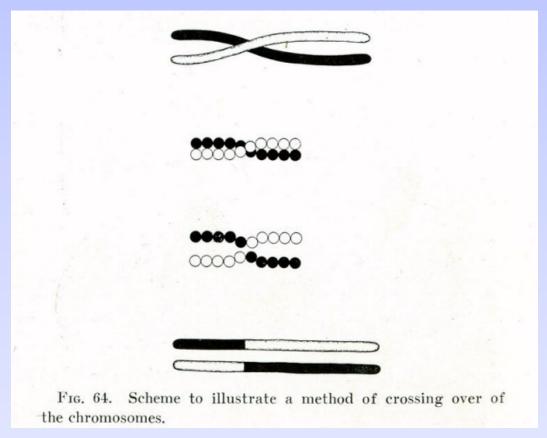

Gramma = Meyer

Grampa = Provost

(Simplified example with 5 chromosome pairs instead of full 22 pairs)

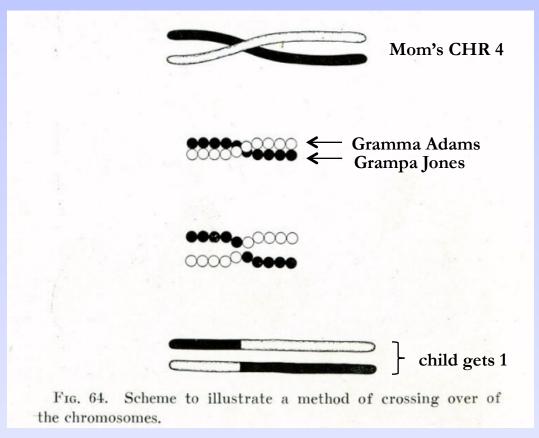

Random Assortment of Chromosomes

(Mom: $2^5 = 32$ possibilities) & (Dad: $2^5 = 32$ possibilities) $\rightarrow 32 \times 32 = 1024$


Random Assortment of Chromosomes

Autosomal DNA and Recombination

Thomas Hunt Morgan's illustration of crossing over (1916)



http://en.wikipedia.org/wiki/File:Morgan_crossover_1.jpg

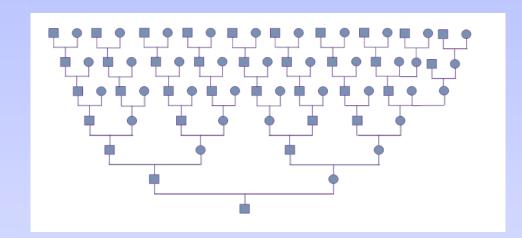
Autosomal DNA and Recombination

Thomas Hunt Morgan's illustration of crossing over (1916)

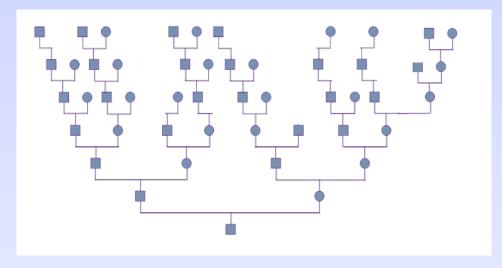
http://en.wikipedia.org/wiki/File:Morgan_crossover_1.jpg

What Do We Inherit?

- 2 parents have <u>total</u> of 44 chromsome pairs
- 4 grandparents have total of 88 pairs
- 1 child only has room for 22 pairs


We must have less and less DNA from older ancestors

NET: Our oldest ancestors start to disappear from our genetic tree!!



What Do We Inherit?

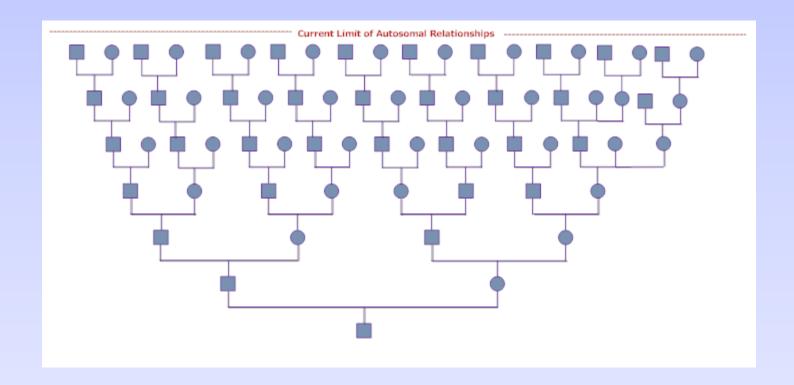
Genealogical Tree

Genetic Tree

What Do We Inherit?

- Parents have <u>total</u> of 44 chromsome pairs (12 billion bases)
- Grandparents have <u>total</u> of 88 pairs (24 billion bases)
- Children only have room for 22 pairs (6 billion bases)

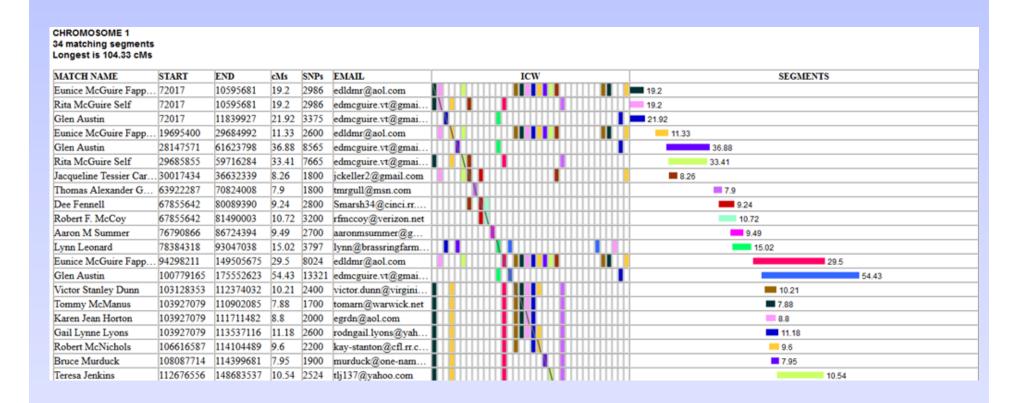
We must have less and less DNA from older ancestors


NET: Our oldest ancestors start to disappear from our genetic tree!!

BUT: Due to recombination random pieces from distant ancestors can persist (i.e. – we occasionally get 21 cM segment from 10th GG parent)

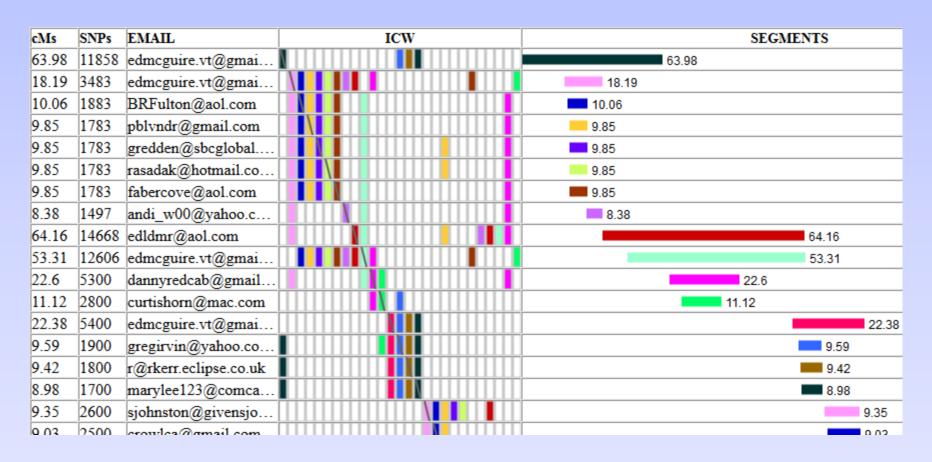
Autosomal DNA Testing Finds More Relationships

Limitation Is 5 to 6 Generations

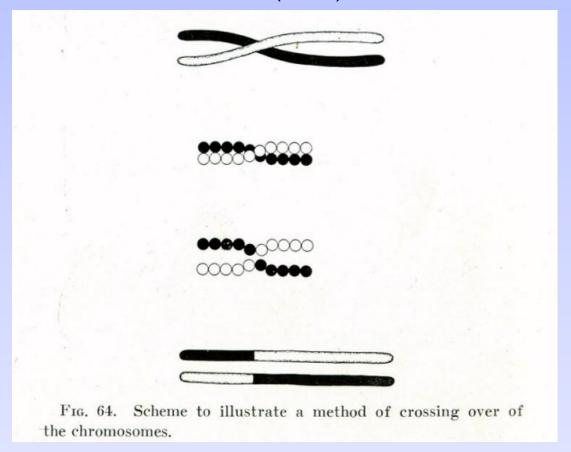


GEDMatch Table With Anyone Who Uploads Data

							Н	Autosomal					X-DN/	4		
Kit Nbr Type Triangulate GEDCOM List Select Sex						Sex	Mt	Y	Details Total cM largest cM Gen			Details	Total cM	largest cM	Name	
¥ A							▼ ▲	▼ ▲		•	•	▼ ▲		•	•	▼ ▲
A710015	F2	Ī		L		М	J	R1b1a2	A	3585.8	214.5	1	X	186.8	97.7	*mcgvtedw
F294401	F2	Ī		L		F	U5		A	1843.9	126.8	1.5	X	0	0	*emfct
F294399	F2	I		L		F	U5		A	1523.3	126.6	1.6	X	0	0	*rmsct
A373877	F2	Ī		Ī		F			A	49.4	15.9	4.1	X	3.7	3.7	*jmstevens
A413529	F2	I		Ī		F			A	46.3	12.3	4.1	X	0	0	Mary Jo Hiestand
F296954	F2	Ī		Ī		F			A	41.8	13.6	4.2	X	0	0	Erin Elizabeth Rodriguez
A962374	F2	Ī		Ī		F			A	44.7	13.1	4.2	X	0	0	G E
FB4683	F2	Ī		Ī		F	H7		A	43.9	10.8	4.2	<u>X</u>	0	0	*"Duffy"
F325072	F2	Ī		Ī		F			A	40.2	10.7	4.2	X	0	0	*RBailey
F285837	F2	Ī		Ī		M		I-M253	A	40.9	10.6	4.2	X	0	0	Dan Matthews
A973047	F2	Ī		Ī		M			A	35.3	21.6	4.3	<u>X</u>	0	0	∗K.A. through Melissa
A615370	F2	Ī		Ī		F			A	36	21.2	4.3	<u>X</u>	0	0	*WendyW
F227166	F2	Ī	<u>G</u>	Ŀ		M		R1b1a2	A	37.7	13.3	4.3	<u>X</u>	0	0	*ROBERTS Uncle
F31300	F2	Ī		Ī		M	H7	R-L2	A	34.6	10.7	4.3	X	0	0	*Jacques
A141470	F2	Ī		Ŀ		M			A	35.8	10.5	4.3	<u>X</u>	0	0	Kenneth Wood
A602490	F2	Ī		Ŀ		F			A	30.6	23.5	4.4	X	0	0	Alison June Moore
M203920	V3	Ţ		Ī		F	T2e		A	33.1	15.9	4.4	<u>X</u>	3.7	3.7	Julia Stevens
M195557	V3	Ī		Ŀ		F	T2e		A	33.1	15.9	4.4	X	3.7	3.7	Julia Stevens
F252553	F2	I		Ī		М			A	33	13	4.4	X	0	0	phil whitelock
F293138	F2	Ī		L		U	K	R1b1a2 (R-M269)	A	30.8	12.5	4.4	X	0	0	*Susan Whalen
F103192	F2	I		Ī		F	H1am1		A	32	10.5	4.4	X	3.2	3.2	Dora Smith
A738433	F2	I		L		М	H5a1	R1b1b2a1a2d	A	29.7	23	4.5	X	0	0	Dave Inbody
M070626	V3	Ţ		L		F			A	27.6	21.2	4.5	<u>X</u>	0	0	*WendyW



Autosomal DNA Analyzer (ADSA)



Autosomal DNA Analyzer (ADSA)

Thomas Hunt Morgan's illustration of crossing over (1916)

Source: Wikipedia.org

http://en.wikipedia.org/wiki/File:Morgan_crossover_1.jpg

Special Interest Groups

Interest Group	Week of the Month						
Scottish	1 st Tuesday (6:30 pm)						
Quebec Research	2 nd Tuesday (6:30 pm)						
Irish	3 rd Tuesday (6:30 pm)						
Genetic Genealogy	4 th Tuesday (6:30 pm)						

AutosomalDNA Testing Recommentations

My top choice is FamilyTreeDNA (in my opinion)

If looking for African-American cousins & origins – AncestryDNA

If not intending to ever work with segment data - AncestryDNA

If also doing medical testing – 23andMe

If mainly interested in ethnicity percentages – 23andMe

If adoptee / unknown parentage – need to test with all three

If someone in your family tested w/ company A – you might follow lead

Autosomal Test Results

You can search for those common ancestors in a bigger pond!!

GEDMatch Table With Anyone Who Uploads Data

							Н	Autosomal					X-DN/	4		
Kit Nbr Type Triangulate GEDCOM List Select Sex						Sex	Mt	Y	Details Total cM largest cM Gen			Details	Total cM	largest cM	Name	
¥ A							▼ ▲	▼ ▲		•	•	▼ ▲		•	•	▼ ▲
A710015	F2	Ī		L		М	J	R1b1a2	A	3585.8	214.5	1	X	186.8	97.7	*mcgvtedw
F294401	F2	Ī		L		F	U5		A	1843.9	126.8	1.5	X	0	0	*emfct
F294399	F2	I		L		F	U5		A	1523.3	126.6	1.6	X	0	0	*rmsct
A373877	F2	Ī		Ī		F			A	49.4	15.9	4.1	X	3.7	3.7	*jmstevens
A413529	F2	I		Ī		F			A	46.3	12.3	4.1	X	0	0	Mary Jo Hiestand
F296954	F2	Ī		Ī		F			A	41.8	13.6	4.2	X	0	0	Erin Elizabeth Rodriguez
A962374	F2	Ī		Ī		F			A	44.7	13.1	4.2	X	0	0	G E
FB4683	F2	Ī		Ī		F	H7		A	43.9	10.8	4.2	<u>X</u>	0	0	*"Duffy"
F325072	F2	Ī		Ī		F			A	40.2	10.7	4.2	X	0	0	*RBailey
F285837	F2	Ī		Ī		M		I-M253	A	40.9	10.6	4.2	X	0	0	Dan Matthews
A973047	F2	Ī		Ī		M			A	35.3	21.6	4.3	<u>X</u>	0	0	∗K.A. through Melissa
A615370	F2	Ī		Ī		F			A	36	21.2	4.3	<u>X</u>	0	0	*WendyW
F227166	F2	Ī	<u>G</u>	Ŀ		M		R1b1a2	A	37.7	13.3	4.3	<u>X</u>	0	0	*ROBERTS Uncle
F31300	F2	Ī		Ī		M	H7	R-L2	A	34.6	10.7	4.3	X	0	0	*Jacques
A141470	F2	Ī		Ŀ		M			A	35.8	10.5	4.3	<u>X</u>	0	0	Kenneth Wood
A602490	F2	Ī		Ŀ		F			A	30.6	23.5	4.4	X	0	0	Alison June Moore
M203920	V3	Ţ		Ī		F	T2e		A	33.1	15.9	4.4	<u>X</u>	3.7	3.7	Julia Stevens
M195557	V3	Ī		Ŀ		F	T2e		A	33.1	15.9	4.4	X	3.7	3.7	Julia Stevens
F252553	F2	I		Ī		М			A	33	13	4.4	X	0	0	phil whitelock
F293138	F2	Ī		L		U	K	R1b1a2 (R-M269)	A	30.8	12.5	4.4	X	0	0	*Susan Whalen
F103192	F2	Ι		Ī		F	H1am1		A	32	10.5	4.4	X	3.2	3.2	Dora Smith
A738433	F2	I		L		М	H5a1	R1b1b2a1a2d	A	29.7	23	4.5	X	0	0	Dave Inbody
M070626	V3	Ţ		L		F			A	27.6	21.2	4.5	<u>X</u>	0	0	*WendyW

Genetic Genealogy At Our Library

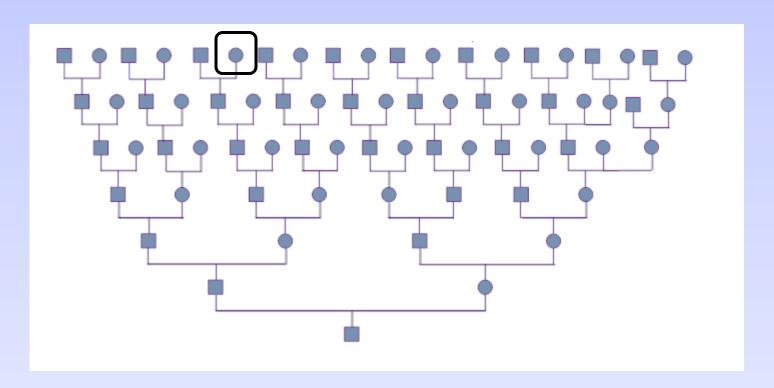
4th Tuesday is 'DNA Night' for members

- DNA forum for discussions, questions and answers
- A focus on tools, tips and deeper understanding of the technology

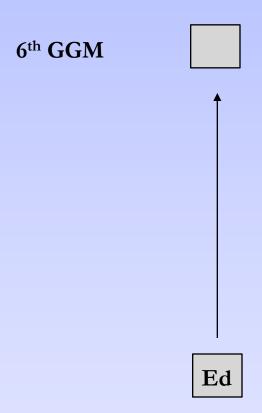
"We're Here To Help"

Don't Forget!

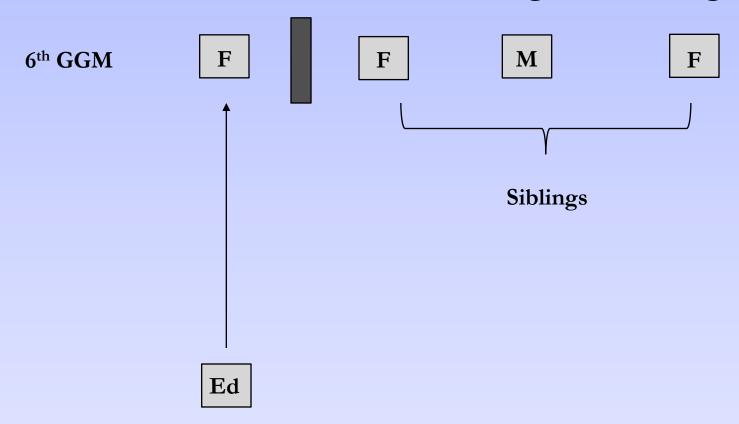
- Use our online forum on DNA testing (in Members Only area)
- Best books on genetic genealogy on sale here
- NEW: DNA testing laminated guides (6 topics)
- Big selection of other genealogy books & laminate guides
 - we do take credit cards & cash & checks
- Memberships (\$30)

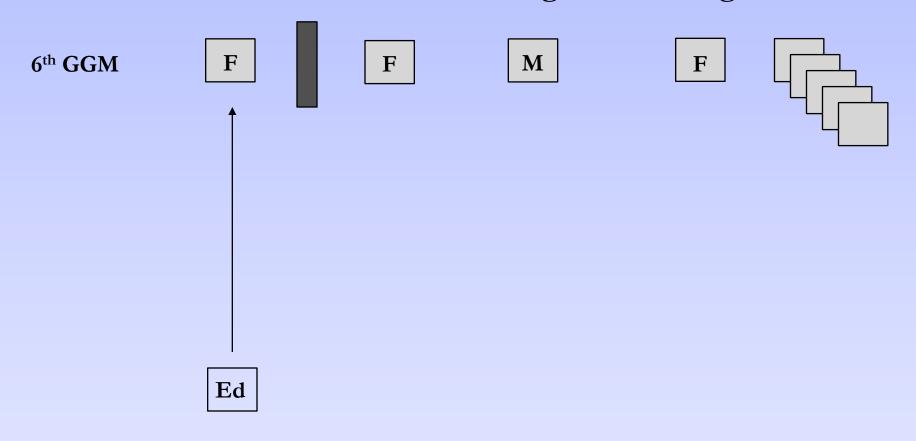

Thank You!

Questions?

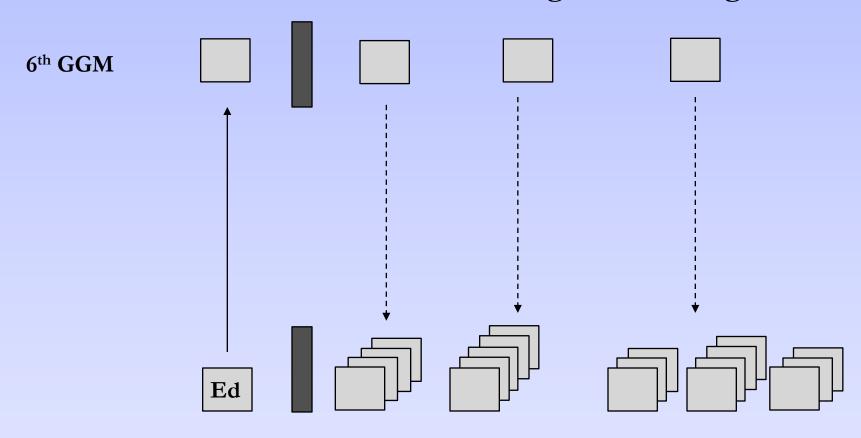


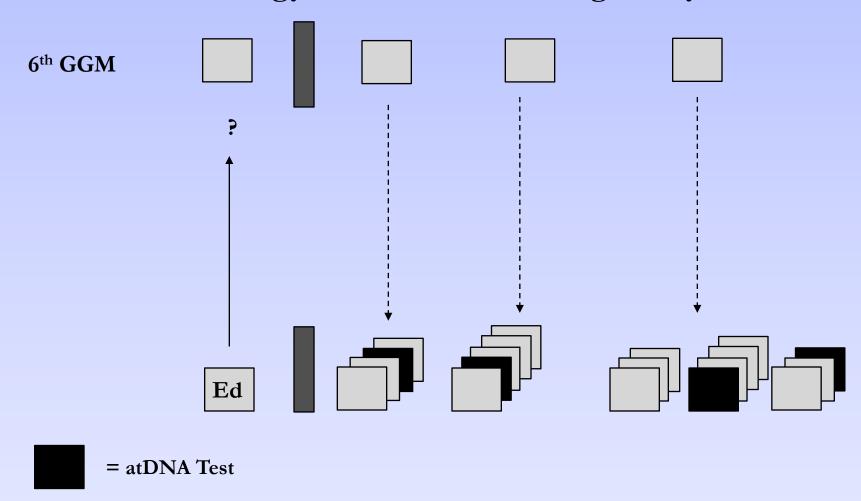
Hundreds of Ancestors with Thousands of Living Descendants


Traditional Genealogy

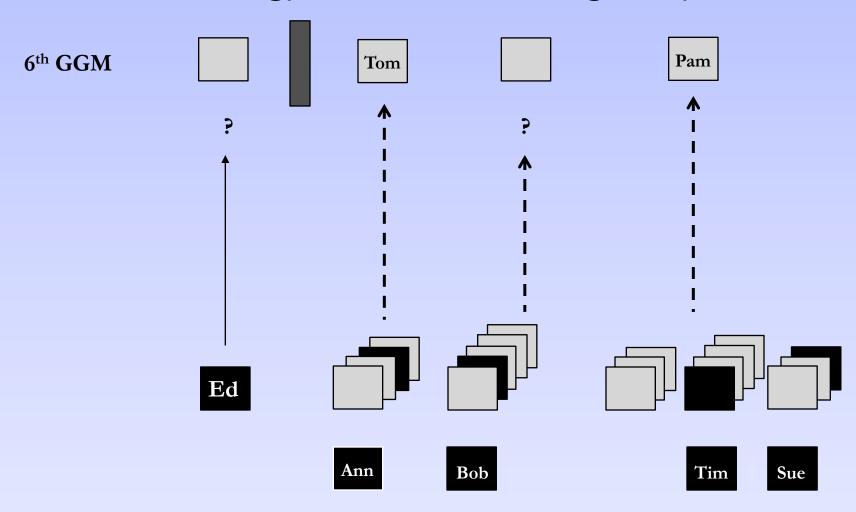


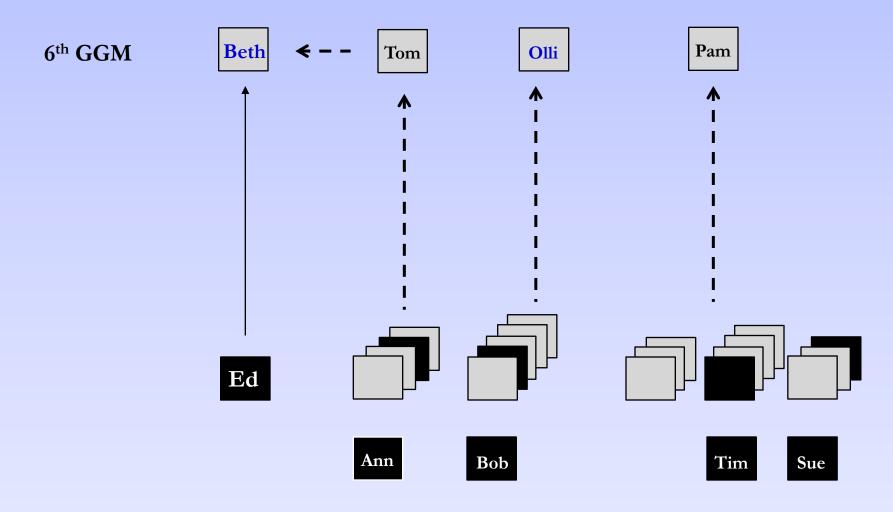
Traditional Genealogy





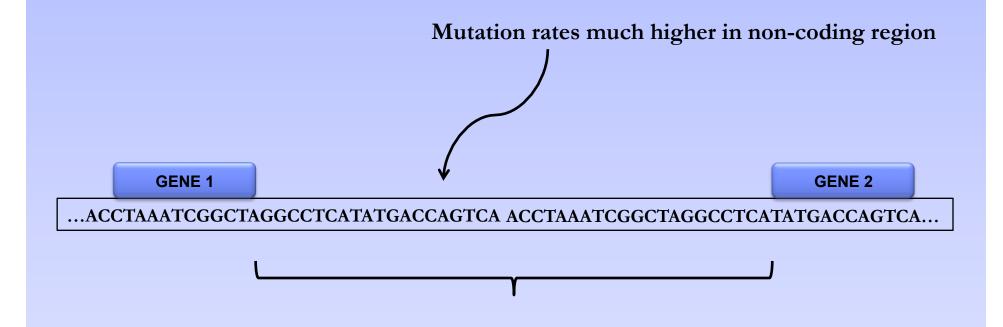
6th GGM
?
Ed





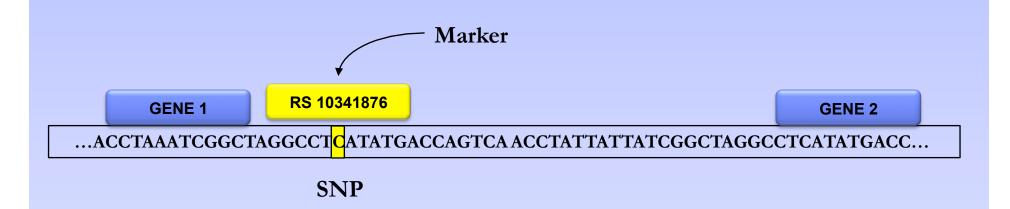
 $6^{th} \ GGM$ EdBob Tim Sue

Humans have about 20,000 genes


Genes comprise 1.5% of our DNA

GENE 1 GENE 2

...ACCTAAATCGGCTAGGCCTCATATGACCAGTCA ACCTAAATCGGCTAGGCCTCATATGACCAGTCA...


Non-Coding Region

Non-Coding Region

A 'marker' is a location where we <u>already know</u> mutations have occurred in the past.

FT-DNA Matches Page

Ed McGuire <edmcguire.vt@gmail.com>

Nov 4 (11 days ago) 🥎

to ddoyel 🔻

Dear David:

I recently obtained results from Family Tree DNA and found that I share about 60 cM of DNA with you, placing us possibly in the range of 2d to 4th cousins. I was hoping to compare surnames and ancestral origins if you were willing to do that.

My surnames are with my data on the Family Tree DNA website. My eight great-grandparents' origins are as follows:

McGuire: County Limerick, Ireland Roche: County Kilkenny, Ireland O'Donnell: County Donegal, Ireland

Lehouillier: Batiscan, Champlain County, Quebec

Austin: Hampshire, England Lynn: Northumberland, England Hodges: Northumberland, England

Pasbach: Nassau, Germany

Sincerely,